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An algorithm is presented for the computation of a conformal map- 
ping discretized on a non-uniformly spaced point set, useful for the 
numerical solution of many problems of fluid dynamics. Most existing 
iterative techniques, both those having a linear and those having a 
quadratic type of convergence, rely on the fast Fourier transform (FFT) 
algorithm for calculating a convolution integral which represents the 
most time-consuming phase of the computation. The FFT, however, 
definitely cannot be applied to a non-uniform spacing. The algorithm 
presented in this paper has been made possible by the construction of 
a calculation method for convolution integrals which, despite not using 
an FFT, maintains a computation time of the same order as that of the 
FFT. The new technique is successfully applied to the problem of 
conformally mapping a closely spaced cascade of airfoils onto a circle, 
which requires an exceedingly large number of points if it is solved with 
uniform spacing. ~2 1992 Acsdemlc Press. Inc 

1. INTRODUCTION 

The numerical calculation of a conformal mapping is the 
basic step in the solution of a large number of problems of 
fluid dynamics, including the determination of inviscid flow 
fields around arbitrary profiles and the setup of orthogonal 
calculation grids within curved boundaries. One of the 
most frequently used techniques for numerical conformal 
mapping of airfoil profiles first maps the given, simply or 
multiply connected, profile onto a smooth, cornerless, 
shape by means of analytical pretransformations and then 
iteratively calculates, in discretized form, the final transfor- 
mation of the intermediate shape into a circle or annulus. 

Several methods have been developed for the numerical 
calculation of the final mapping of a smooth curve onto 
a circle, starting with the iterative algorithm devised by 
Theodorsen and Garrick in 1933 in order to study potential 
flow around arbitrary wing sections [ 11. The Theodorsen- 
Garrick algorithm was extended by Garrick himself to the 
cases of biplane wings [2] and cascades of airfoils [3]. 
Since the Theodorsen-Garrick method involves repeated 
Fourier transforms, it benefited greatly from the advent of 
electronic computers and the introduction of the fast 
Fourier transform (FFT) algorithm, as described in the 

review paper by Ives [4]. During more recent years, several 
variants of the Theodorsen-Garrick algorithm were 
introduced by Melentiev and Kulisch, Timman, Friberg, 
Bergstroem, Menikoff and Zemach, Chakvararthy and 
Anderson, and Challis and Burley, all of which are described 
in the review paper by Gutknecht [S], as well as in other 
papers collected in Ref. [6] and in the book by Henrici [ 71. 

Among the techniques for numerically mapping an inter- 
mediate smooth curve onto a circle, a breakthrough was 
represented by the idea, hinted at in special situations by 
Vertgeim [S] and Huebner [9] and independently set forth 
in general by Wegmann [lo] and Luchini and Manzo 
[ 111, that a quadratic-convergence Newton-style iterative 
algorithm for conformal mapping can be constructed 
using for each iteration the solution of a Riemann-Hilbert 
problem which requires only twice as much computing time 
as an iteration of the previous, linearly converging, algo- 
rithms. This method requires a much smaller number of 
iterations to converge than Theodorsen and Garrick’s and 
can handle more general shapes of the initial profile. It 
has also been extended to cascades and to twin airfoils, by 
Wegmann [ 121 and in a faster form by Luchini and 
Manzo [ 111. 

The most time-consuming step performed, at one or more 
intermediate stages, in calculating the conformal mapping 
of a smooth shape onto a circle numerically is the solution 
of a problem of function conjugation on the circumference, 
that is, the determination of the imaginary part of a complex 
analytic function whose real part is given. In Theodorsen 
and Garrick’s method and most of its followers, the solution 
of this problem is first expressed, according to Schwartz’ for- 
mula, by a convolution integral between the given real part 
and a suitable Green function, and then this convolution 
integral is calculated by Fourier transforming the given 
function, multiplying its transform by the Fourier transform 
of the Green function, and reverse transforming the result. 
With the aid of the FFT algorithm, the convolution integral 
can thus be computed in a time O(Nlog N), N being the 
number of points of the discretization. The discretization, 
however, has to be uniform. 

Every time the profile whose conformal mapping is 

0021-9991/92 S5.00 
Copyright 0 1992 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

368 



FAST CONFORMAL MAPPING ALGORITHM WITH NO FFT 369 

sought presents multiple scales, for instance, having small 
bumps or a rather sharp leading edge, a non-uniform point 
spacing can afford a precise representation of the profile, 
and of its conformal mapping, with a much lower number of 
points than required by a uniform discretization. A similar 
situation arises, even if the initial profile is smooth and 
regular, when considering closely spaced periodic cascades; 
for the pretransformation of a cascade into a single 
profile maps most of the profile’s contour onto two very 
small regions near the leading and trailing edges (the 
phenomenon of “crowding”), and these two regions are 
smaller the closer that the spacing is between the successive 
blades. As will be seen in the examples, calculation of the 
conformal mapping of a closely spaced cascade using a 
uniform discretization is very uneconomical. 

However, a non-uniform discretization definitely 
prevents use of the FFT. On the other hand, a straight- 
forward calculation of the convolution integral as N suc- 
cessive numerical quadratures requires a time O(N’), much 
longer than O(N log N). If it is agreed that, even in the 
present day of ever faster computers, any algorithm is worth 
being accelerated no matter how small its running time may 
already be in absolute terms, because there will always be 
applications in which the algorithm has to be run a large 
number of times, then the need exists for a method that may 
afford the calculation of a convolution integral on a non- 
uniform discretization in a time comparable to that required 
for uniform spacing. We shall present such an algorithm in 
the following section. 

2. CALCULATION OF A CONVOLUTION 
INTEGRAL OVER A NON-UNIFORMLY 

SPACED POINT SET 

Let us consider a general convolution integral of the form 

Z(9’) =$-f(9) g(9’ - 9) d9, (1) 

where f(9), which will be called the source function, is 
known in discretized form for several values of the angle 
variable 9, g(9) is an analytically known kernel, which 
for the conjugation problem on the circle is given by 
g(9) = (2x) PI cotg(9/2), and Z(9’) is the resulting function. 
The integral is extended over the whole circumference 
0 6 9 < 27~. Let us name 9 “source point” and 9’ “target 
point,” and let us assume that the resulting function I($‘) is 
sought to be calculated on the same, non-uniformly spaced 
set of points on which the values of the source function are 
given. 

A direct calculation of Eq. ( 1) as N separate integrals over 
N points requires a time O(N*), much larger than that 
required for the same number of points by the FFT algo- 

rithm (which, however, only works for uniformly spaced 
points). A faster computation may be obtained if the dis- 
cretization points can be grouped in a way that reflects the 
existence of multiple scales in the problem. Let us start from 
the observation that the Green function of a conjugation 
problem is generally singular at the target point but regular 
everywhere else, and, one could say, increasingly smooth 
with increasing distance from the target point. This may 
be directly verified to be true for the function g(9) = 
(27~) ~ ’ cotg(9/2) but is not at all an exclusive property of 
the circle. 

This observation hints at the fact that small-scale details 
of the source function f(8) are important near the target 
point, but quite irrelevant far from it. More generally, it may 
be expected that in the neighbourhood of any source point 
9 details on a scale that is small compared to the distance of 
9 from 9’ may be neglected. Following this idea, we envision 
an algorithm in which the circumference is divided up into 
intervals of varying size, each having a size proportional to 
its distance from the target point, and a functional represen- 
tation of some kind is adopted for f(S) and g(9) such that 
only a fixed number M of parameters, independent of the 
number of discretization points, is sufficient to represent 
them inside each interval. 

To be more precise, let us rewrite Eq. (1) as 

where the K intervals (Qk- , , Qk), with QK= &, + 27r, span 
the whole circumference, and G,, are the coefficients of an 
expansion of the kernel g(9’ - 9) with respect to the set of 
functions qrnk. Equation (2) can, of course, be rewritten as 

k=l m=O 

where 

(3) 

The time required for the calculation of Eq. (3) for each 
target point is proportional to KM, and for all target points 
to NKM. If we now assume it to be true, as will be shown 
to be in the particular case of the circumference, that a given 
precision in the representation of g(9’ - 9) may be achieved 
with a fixed number A4 of terms in the expansion, provided 
the intervals (Sk _ i , Sk) have a size proportional to their dis- 
tance from the target point, it will be seen that this time is 
roughly proportional to N log N. In fact, the requirements 
that the intervals should be contiguous and the size of each 
interval approximately proportional to its distance from 
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the target point imply that the interval sizes form an 
approximate geometric progression, i.e., that 9, - 9, , z 
Aqk for some A and q with q < 1 (actually, two geometric 
progressions, one on each side of the target point). If we 
carry on this progression up to the point where about M 
discretization points are left between 9, and the target 
point, so that the integral from 9, to the target point may 
be computed in a time O(M) anyhow, the resulting number 
of intervals K will turn out to be proportional to the 
logarithm of the size of the interval that contains M 
points, which means, at least for uniform discretization, to 
log(N/M). (We shall assume this estimate to be repre- 
sentative of the case of non-uniform spacing too. Whether 
such an assumption is true or not in the limit for N-t x 
depends on the particular non-uniform distribution chosen 
and on the particular way in which it is changed in order to 
let N go to infinity. However, there is always a sequence of 
distributions for which it is true.) If M is considered to be 
fixed, this is enough to show that the computation time 
NKM of Eq. (3) is U(Nlog N). In order that the exact value 
of the integral of Eq. (1) be approached for N --+ K. 
however, M should be allowed to grow together with N in 
such a way that the error of the expansion (2) may remain 
comparable to the error caused by the discretization of the 
source function J An asymptotic estimation of these errors 
for N and M tending to infinity is complicated and would 
lead us too far from the scope of this paper. In practice, since 
the error decreases rapidly with increasing M, the effect of 
M can change the above estimate only very slightly. 

Of course, the argument just exposed is valid provided 
that the time necessary to evaluate the coefficients Gmk and 
the integrals M,, is negligible or, at most, comparable with 
respect to that necessary for Eq. (3). Indeed, a choice of the 
functions qkrn may be found for which this is so. The key to 
a rapid calculation of the integrals Mmk is to calculate 
explicitly the integrals extended over the smallest intervals 
only, simultaneously for all target points, and then to find a 
way to express the integrals over the larger intervals in 
terms of those over the smaller ones. This is possible if the 
basis functions (P,,,~ relating to the larger intervals are 
chosen so that they are linear combinations of those relating 
to the smaller ones. 

In order to have this property, the functions q,, must be 
scale-invariant; i.e., they must remain similar to themselves 
upon a scale transformation. This requirement uniquely 
identifies the set of powers of 8, if each basis function must 
remain similar to itself, independently of the others, or more 
generally the set of polynomials, once linear combinations 
are allowed. 

In addition, since the same basis is to serve for different 
target points, the basis also may need to be translation- 
invariant. The property of remaining similar to itself after a 
change of origin in 9 uniquely identities exponentials, real or 
complex, of 9, which, unfortunately, are not scale-invariant. 

Once linear combinations are allowed, however. the same 
property is also shared by powers and polynomials. since ;i 
given single power or polynomial of degree ~1 becomes. 
upon translation, a different polynomial of degree M. which 
can always be expressed as a linear combination of powers 
or polynomials of degree less than or equal to r?r. 

In conclusion, powers, (orthogonal) polynomials, real 
exponentials, and complex exponentials arc all good 
candidates for the functions v,,,~. In practice, all these 
possibilities were tested by us and the algorithm worked 
equally well using any one of them. None turned out to have 
a definite speed advantage over the others, but the choice of 
simple powers led to a significantly shorter code, so that we 
settled on this choice for further work. 

3. THE CONVOLUTION-INTEGRAL ALGORITHM 

In the following we shall illustrate the algorithm resulting 
from the particular choice of powers for qrnk, i.e., 

where 9, is the mean point of each interval, given by 
9, = (Qk- , + 9,)/2. Correspondingly, the integrals of 
Eq. (4) will become 

which are usually called “moments” of the functionf: 
In order to attain a fast computation of all the moments 

required for Eq. (3), our algorithm first creates a database of 
moments relating to a properly chosen set of intervals of 
varying sizes and then calculates the actual convolution 
integrals according to Eq. (3), in sequence for all target 
points, extracting the moments it needs from the database. 
For speed of access the database is given a tree structure, 
with every record that represents a larger interval con- 
taining links to the records that represent the smaller parts 
into which it is subdivided. A convenient choice turns out 
to be a binary-tree structure, with a first interval which 
coincides with the whole circumference divided in two parts, 
each of which is divided in two, and so on down to intervals 
small enough that they contain about M points each, which 
are not subdivided further. Of course, with a non-uniform 
point set initially assigned, the terminal intervals will turn 
out to be of different sizes in different parts of the circum- 
ference, in a way that follows the local density of points. 

An overall flowchart of the convolution algorithm is 
shown in Fig. 1. The source function is first interpolated by 
a periodic cubic spline and the exact moments of the spline 
are calculated on the smallest intervals. The moments are 
then translated to different centers 9,, by a recursive 
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FIG. 1. Flowchart of the convolution algorithm for numerical 
function conjugation on a non-uniformly spaced discretization set. 

formula derived from Horner’s rule (see Appendix A), 
and combined two at a time over larger and larger intervals. 
Finally, Eq. (3) is computed for all target points by 
traversing the tree structure and selecting the largest inter- 
vals such that their size is less than a given fraction of their 
distance from the target point; the coefficients G,, may be 
calculated either initially or on demand by a fast iterative 
rule derived from one of the differential equations of which 
the cotangent is a solution (described in Appendix B). The 
“singular” interval left over about the target point, where 
the expansion (2) does not apply, is dealt with by a Laurent 
expansion of the kernel, calculated once and for all by an 
iterative rule (also given in Appendix B), of which the 
regular terms are related to moments of the source function 
just as everywhere else, whilst the singular term propor- 
tional to l/(9 - 9’) is exactly convoluted with the spline 
by using the spline coefficients of the (roughly M) points 
falling in this interval. 

In a typical run, computation time turns out to be 
subdivided as follows: about 60% of the time is spent 
calculating Eq. (3), 30% for the singular intervals, and 10 % 
calculating the moments. Minor fractions of the order of 
1% are taken by the initial setup of the tree structure and 
by the calculation of the coefficients of the periodic spline 
from the initially given values of the source function5 

4. CONFORMAL MAPPING AND TEST RESULTS 

The just described new algorithm for convolution 
integrals has been combined with the quadratic-con- 
vergence Newton-style iterative technique of Ref. [ 1 l] into 
a general conformal-mapping algorithm with non-uniform 
discretization. Since it is equally easy with this algorithm to 
let the discrete points which are put into correspondence 
with each other move either on the original profile or on the 
circumference at each iteration, we have the possibility of 
fixing the discretization points on the original profile, in the 
way that best fits its shape, and then transforming these 
points, first, with the analytical pretransformations and, 
then, with the iterative algorithm and obtaining their 
correspondents on the circumference. This procedure 
automatically takes care of the phenomenon of crowding, 
because the points on the original profile are initially 
chosen, and the algorithm calculates their correspondents 
on the circumference, however close together they may turn 
out to be. 

A flowchart of the resulting algorithm is given in Fig. 2, 
where each hexagonal box corresponds to an application of 
the FFT-less convolution algorithm. 

To test the algorithm we have calculated the conformal 
mapping of a cascade of airfoils for several values of blade 
spacing. Figure 3a illustrates a cascade of NACA 4418 air- 
foils with a spacing equal to the chord. The airfoil profile has 

with corners, 
given in N orbi- 
trorily chosen 

Intermediate cornerless profile 
points X,, Y, 

Cmute curvilinear abscissa OS on s 
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Find function Fr conjugate of I,[Z/zexp(A)] and 
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FIG. 2. Flowchart of the iterative conformal mapping algorithm of 
Ref. [ 1 l] modified to include the new function-conjugation procedure. 
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FIG. 3. Conformal mapping of an infinite cascade of NACA 4418 air- 
foils with a spacing equal to the chord: (a) initial profile and discretization 
points; (b) shapes obtained after the first and second pretransformation; 
(c) final position on the circumference of the discretization points 

been discretized in the 32 points shown in the figure and 
subjected to the necessary pretransformations, following the 
procedure outlined in Ref. [ 111, becoming first the inter- 
mediate single blade and then the cornerless “blob” shown 
together in Fig. 3b. The final location of the discrete points 

NUMBER OF POINTS AND COMPUTATION 

TINE C.T. NEEDED TO ACHIEVE AN 

ERROR ~1% 

N C.T. 
UNIFORn DISCR. 1024 270 
(WITH FFT) 

NONUNIFORM DISCR. 32 84 

(PRESENT METHOD) 

b 5. CONCLUSIONS 

C 

FIG. 4. Conformal mapping of an infinite cascade of NACA 4418 
airfoils with a spacing equal to 0.5 times the chord: (a) initial profile and 
discretization points; (b) shapes obtained after the first and second 
pretransformation; (c) tinal position on the circumference of the discretiza- 
tion points. 

a 

NUHLKR OF POINTS N AND COMPUTATION 

TIE C.T. NEEDED TO ACHIEVE AN 
ERROR ~1% 

N C.T. 
UNIFORM DISCR. 8192 3400 
(WITH FFT) 

NONUNIFORM DISCR. W 230 
(PRESENT RTHOD) 

FIG. 5. Conformal mapping of an infinite cascade of NACA 4418 
airfoils with a spacing equal to 0.36 times the chord: (a) initial profile and 
discretization points; (b) shapes obtained after the first and second 

pretransformation; (c) final position on the circumference of the discretiza- 
tion points. 

on the circumference calculated by the iterative algorithm 
appears in Fig. 3c. Similar data are given for cascades with 
spacing of 0.5 and 0.36 times the chord in Figs. 45. It may 
be seen that the discretization points tend to accumulate 
near the leading and trailing edges of the intermediate blade 
profile with decreasing spacing. In order to give an error 
comparable to that of the variable-spacing algorithm (a few 
parts per thousand), the standard algorithm using uniform 
spacing and the FFT required 128 points and 25 s in the first 
case, 1024 points and 270 s in the second, and 8192 points 
and 3400 s in the third, against 32 points and 84 s in the first 
two cases and 64 points and 230 s in the third for the 
variable-spacing method. 

A numerical conformal mapping technique has been 
presented which is capable of operating on a non-uniformly 
spaced point set thanks to a new technique for the calcula- 
tion of the convolution integral that constitutes its most 
time-consuming step. The new convolution-integral algo- 
rithm achieves almost O(N log N) computation time by 
exploiting the existence of several different space scales in 
the problem. 

To this end the calculation domain (unit circumference) 
is partitioned into a binary tree of intervals, that is in two 
parts, each of which is further subdivided in two, and so on, 
stopping when the smallest intervals contain approximately 
M points each. M moments of the source function are then 
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calculated on each interval by exploiting the results 
obtained for the smaller intervals to construct the values 
pertaining to the larger ones. Finally, the convolution 
integral is calculated for each target point from the moment 
information, relative to a set of intervals whose widths are 
roughly proportional to their distances from the target 
point, a set which contains O(log N) intervals. Computa- 
tion time is thus O(MNlog N). 

Application of the new technique to conformal mapping 
of a cascade of blades shows that, for a blade spacing of 
0.5 times the chord or less, a standard constant-spacing 
FFT-based conformal mapping algorithm requires an 
unreasonably large number of points and computation 
time, whereas the new variable-spacing algorithm retains a 
computation time comparable to the one required for larger 
spacing. 

In addition, it is perhaps worth mentioning that the con- 
volution integral algorithm developed in this work is quite 
general and lends itself to applications other then conformal 
mapping in several domains of computational physics. 

APPENDIX A: CALCULATION OF MOMENTS 
OVER A TREE-LIKE SET OF INTERVALS 

The moments of a function. defined as 

M, = j+f(9)(S - 9)” d9 (A.11 
$1 

are obviously additive with respect to the interval of integra- 
tion, and therefore the moment over a “father” interval 
which is, in the tree structure, the union of two “son” inter- 
vals is simply giuen by the sum of the moments relating to 
the sons. The only problem is that the center 9 of the father 
interval is different from the center of each son, so that the 
moments need to be translated to a different center before 
adding. If we take the origin as the old center and 9 as the 
new center, the problem is that of expressing Eq. (A.l) in 
terms of moments calculated with respect to the origin. This 
is certainly possible, since Eq. (A. 1) represents a polynomial 
in 9, and the result can be quickly evaluated by a formula 
analogous to Horner’s rule which we shall now illustrate. 
Let us define 

We have 

$n(g-g)m=gn+‘(g-g)m-l-~$n($-g)m-l (A.3) 

and, therefore, 

Using Eq. (A.4) and starting with M,, given for O< 
n < M, we can successively calculate M,, for 0 d n < M - 1, 
M,, for 0 Q n d M - 2, and, finally, M,, for 0 < m 6 M, 
which is the required result. 

APPENDIX B: TAYLOR AND LAURENT 
EXPANSION OF COTG( 9/2) 

In order to apply Eq. (2) with (P,,,~ = (9 - gk)m we need 
a quick way to calculate the Taylor coefficients Gmk of 
g(9) = cotg(9/2) about an arbitrary point 9,. Noting that 
g(S) obeys the differential equation 

g’= -(l + g2)/2, (B.1) 

introducing formal Taylor series into each side and equating 
the coefficients of equal powers of (9 - ,!I,), we obtain 

G,,= -(I iG&)/2 03.2) 

( 

m-l 
Grnk= - 1 GikG,-l-i,k 

>i 
2m (m > 1) (B.3) 

i=o 

which solve the problem posed. 
In addition, in order to deal with the interval that 

encloses the origin, we also need the Laurent expansion 
of g about 9 = 0. If we write g = 2/9 + g, and insert this posi- 
tion into Eq. (B.l ), we obtain the new equation 

2g;= 
( 

l+&+gi ) 
1 

03.4) 

whence, if g,(9) = z.,“=, Gi?J”, 

($1) = _ 1 
1 6 03.5) 

( 

m-1 

Gz’= - c G~l)G~)lpj 
>I 

(2m+4) (m>l). 03.6) 
i=O 

(Note that g, , just as g, is an odd function of 9 and therefore 
all the even coefficients are zero.) 
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